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The complete theory of adsorption of a Gaussian chain of finite length on the surface of a spherical 
adsorbent of an arbitrary radius is developed on the basis of a continual (diffusion) model of the polymer 
chain. The influence of the dimensions of the adsorbent on the characteristics of the adsorptional transition 
is analysed. The partition function of the Gaussian chain near an adsorbing impermeable sphere is obtained. 
The diagram of states of the system in coordinates 'radius of the adsorbent-attraction energy' is constructed. 
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I N T R O D U C T I O N  

The development of a complete theory of adsorption of 
macromolecules on the surface of spherical particles of 
an arbitrary radius has many aspects of interest. In the 
practically important processes of the polymer floccula- 
tion of colloid dispersions and many other processes the 
formation of complexes between linear polymers and 
globular particles involves, as one of their stages, the 
adsorption of polymer chains on the surface of more or 
less spherical particles of a finite (on the chain scale) size. 

Hence, apart from the development of the theory of 
adsorption of macromolecules on an infinite planar 
adsorbent, which has been mainly advanced in references 
1-8, repeated attempts have been undertaken to develop 
the theory of adsorption of an individual macromolecule 
o n  the surface of a sphere of a finite radius r s. However, 
the latter theory has not yet been completely developed 
even for the simplest case of individual Gaussian chain. 
In references 9-12, the investigation concerned only on 
the conditions and order of phase transition in the 
adsorption of an infinitely long Gaussian chain according 
to the dimensionality of adsorbent. The effect of volume 
interactions on the conformation of the polymer chain 
adsorbed on a sphere has been investigated by both the 
scaling method 13 and in the mean-field approximation14. 
However, as will be shown below, an error has been 
introduced in reference 14 in the determination of the 
dependence of the critical temperature (attraction energy) 
corresponding to the start of adsorption of the Gaussian 
chain on a sphere. 

Finally, in references 15 and 16 the theory of 
adsorption of a Gaussian chain of a finite length on a 
point adsorbent was developed in connection with the 
problem of the random coil-globule transition in the 
external contracting field. The authors of references 15 
and 16 have used, for this purpose, the method of a 
dynamic renormalization group. However, as will be 
shown below, the quantitative description of chain 

0032-3861/91/050916q]7 
© 1991 Butterworth-Heinemann Ltd. 

916 POLYMER, 1991, Volume 32, Number 5 

conformation given in references 15 and 16 differs from 
that obtained on the basis of quite reliable estimations. 

The present paper deals with the development of a 
complete theory of adsorption of a Gaussian chain of 
finite length on the surface of a spherical adsorbent of 
an arbitrary radius (Figure 1). The continual (diffusion) 
model of the polymer chain will be used. This system 
makes it possible to consider the effect of not only the 
dimensions, but also the dimensionality, of the adsorbent 
on chain conformation and the character of the transi- 
tion. The limits of small and large spheres correspond to 
different dimensionalities of the adsorbent (d - -0  and 
d - -2 ,  respectively). The chain conformation will be 
investigated in detail both in the transition range and far 
from it. 

The main part of the paper will consider the case of a 
rigid impermeable adsorbent: a rigid spherical core (a 
planar wall in the limit of an infinite radius) with a 
potential well on the surface (Figure 2a). The case of the 
permeable adsorbent with repulsion or attraction acting 
in spherical layer (Figure 2b,c) will be considered more 
briefly, and the resemblance and differences between these 
two types of adsorbents will be analysed. 

RESULTS 

Temperature and order of phase transition 
In the continual model, the partition function ZL(r', r) 

of a chain of the contour length L with the ends at points 
r' and r located in a potential field U(r) obeys 16 the 
'diffusion' equation 

a 
- - f D A , +  ZL(r', r) = - - ~  ZL(r', r ) (1) 

OL 

with the initial condition 

lim Z1.(r', r) = 6 ( r ' - r )  (2) 
L~0 
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U(r)/T. In order to determine the temperature and 
character of the adsorption phase transition, it is 
sufficient to consider the properties of the spectrum of 
this equation. 

It is known that if U(r ~ oc) = 0 the eigenvalues with 
E~ ~> 0 form a continuous spectrum, whereas these with 
E~ < 0 form a discrete spectrum. For the appearance of 
the first (c~ = 0) discrete level, E0, corresponding to the 
state of the particle trapped in a well, some critical depth 

Figure 1 Polymer chain near an adsorbing sphere. Lower case letters 
designate the elements of structure; loops (l) and tails (t) 

a 

cs+b 

I 

Here D is the dimensionality of space, A, is the 
D-dimensional Laplacian, a/2 is the persistent length 
playing the role of diffusion coefficient (a being the 
segment length), t~(r) is the energy of unit chain length 
at point r and T is the temperature in energetic units. 

In this and the following sections we will consider chain 
adsorption on the surface of an impermeable particle 
with a radius r s ~ (La) 1/z in the potential well of width 
b << (La) 1/2 (Figure 2a), (La) 1/2 being the characteristic 
size (the mean-square end-to-end distance) of a free chain. 

I Gc , r <~ r~ 

U(r ) -  U(r)= -ItT(r)l, rs<r<b (3) 

(0, b<r  

The diffusion model may be applied to the description 
of chain conformation in those regions of space in which 
a is much smaller than the scale of field inhomogeneity, 
i.e. b, r~ >> a. 

The solution of equation (1) satisfying condition (2) 
can be expressed as 

i , t ZL(r, r) = ~ e x p ( -  E=N)Ud~ (r)~P,(r) (4) 
c¢ 

where the tP,(r) are the orthonormalized eigenfunction 
of the operator on the left-hand side of equation (1) 

{-;2D A, + U~)}tP~(r)= E~tP~(r ) (5) 

where U(r)= U(r)a is the segment energy in the field, 
N = L/a is the number of segments in the chain, and the 
sum in equation (4) contains both the summation over 
the discrete spectrum and the integration over the 
continuous spectrum. 

Equation (4) is equivalent to the stationary Schr6dinger 
equation for a quantum particle in the potential field 

b 

rs ÷ b  

"C 

C 

r s rs+b 

Figure 2 Potential energy U(r) of a chain unit in a centrally symmetric 
field near (a) an impermeable adsorbing sphere; (b) an attracting; or 
(c) repulsing spherical layer, and its approximation by rectilinear 
potentials (broken line) 
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of this well (U/T)c different from zero and depending on 
its shape (in particular, on the width b) is necessary. If 
the parameter being varied is the temperature T, this 
implies that the discrete level is absent at high tempera- 
tures and appears at T ~< T~. In the case of a rectilinear 
well (dashed line on the (Figure 2a)), we have 8 

Tc = \rC2/I \a , /  (6) 

and at z = (T - To)IT < 0, Iml << 1 we have 

E ° =  16 \Te l  - 6 \ 8  b I 
(7) 

At z < 0, the discrete level Eo < 0 is separated from the 
continuous spectrum (E, >1 0) by a finite interval. Hence, 
at IEolN >> 1, the bound state provides an exponentially 
large contribution to the partition function comparing 
to the contribution of the total continuous spectrum 
(ground state dominance, GSD). In this case the value 
of Eo is the free energy of the segment. At N --* oo, the 
GSD conditions are obeyed at any small distance from 
T = To. Hence, the point r = 0 is the point of the phase 
transition of the chain from the free into the adsorbed 
state. The quadratic dependence of E o on the transition 
parameter z in equation (7) corresponds to the second 
order phase transition. For finite chains, the admixture 
of the states of continuous spectrum below Tc leads to 
the appearance of the finite transition range At ~ N -  1/2 

Chain partition function 
Determination of the partition function requires the 

knowledge of eigenfunctions in equation (5). The spheri- 
cal symmetry of the system (U(r)= U(r)) makes it 
possible to separate the variables in equation (5) 
representing ~ ( r )  in the form 

• ~(r) = _1 ZEt(r)yl,,(n ) (8) 
r 

where l = 0 ,  1 . . . .  ; m= - l  . . . . .  l; ct= {E,l ,m},  n = r / r ,  
Yu,(n) are spherical functions. The continuously differen- 
tiated at r > rs radical functions ZEt(r) satisfy the equation 

dr 2 ZEt(r) + (E -- U(r)) 

with the boundary conditions 

l(l + 1!1 
r2 )(El(r)=0 (9) 

is limited (10) 

Substituting equation (8) into equation (4) and 
applying the theorem of summation for spherical func- 
tions, we find 

ZL(r' , r) = (rr') -1 E e x p ( -  EN)  
E 

x ~ (2•+ 1)p,(n,,n)z,(r, lZE,(r ) (11) 
l=o 4zt 

where Pz(n'n) is Legendre's polynomial. 
In the particular case of a free chain at U(r) = 0, the 

solution of equation (9) obeying the conditions in 
equation (10) is given by 

ZEl(r) = (kr)*/24 + 1/2(kr) (12) 

where Jr(x) are Bessel's functions of v order and 
k2=6E/a  2. In this case equation (11) leads to the 

evident result: the Gaussian function 

t / 3 "~3/2 /, 3(r,_r)2,] 
Zcf(r', r) = ~ 2 ~ a )  exp~ ~ - a  J (13) 

(Here and in subsequent considerations the subscript f 
refers to the free chain, and all partition functions are 
normalized in such a manner that the total number of 
states of a free chain of length L is taken to be unity). 

In a centrally symmetrical field U(r), it is convenient 
to avoid angular variables by introducing a centrally 
symmetrical partition function, ZL(r', r) of the chain 
beginning at point r' and ending in a spherical layer of 
radius r and unit thickness. The contributions to this 
partition function provide only s-states (with l = 0) 

ZL(r', r) -- r 2 jZL(r ' ,  r)df~.,. 

r 

r' exp(-Eg)ZE°(r)z*°(r') (14) 

Now let us consider the case of weak adsorption I~1 << 1. 
At N>> 1, when a considerable contribution to the 
partition function is provided only by weakly excited 
states of the continuous spectrum (EN ,,~ aZkZN = 
kELa <~ 1), our problem of weak chain adsorption is 
equivalent to the well known s problem of resonance 
scattering of slow particles in an attractive field having 
a shallow level in a discrete spectrum. 

For the values of r and r' belonging to the external 
range, r, r' > (r s + b), in which U(r) = 0, the solutions of 
equation (9) referring to discrete and continuous spectra 
are given by 

ZEo(r) = (2k) 1/2 e x p [ - k ( r  - rs)], E < 0, 

(61EI'] '/2 (15a) 
k = \ a 2 /  

ZE0(r) = sin[k(r -- r~) + 6K], E >~ 0, 

={6E,  1/2 (15b) 
k \ a 2 j  

The phase shift &K in equation (15b) is determined by 
the crossover of solutions of equation (15b) to those in 
the inner range r s < r < r~ + b where 

ZE0~sin k 2+  a 2 / 

Instead of this crossover the corresponding boundary 
condition at r = r~ + b may be introduced. At I~1 << l ,  the 
solutions in equation (16) relating to the weakly excited 
states are virtually independent of E (and of k) because 
the width of the well is much smaller than the chain size 
(b<< (La)l/2). Consequently, the boundary conditions 
should not depend on k. Moreover, the fulfilment of 
the condition kb << 1 implies that the boundary condition 
may be ascribed to the adsorbent surface r =r~ and 
presented in the form 

d 
- -  In XE0(r)l . . . .  = C (17) 
dr 

This condition should be obeyed by all eigenfunctions 
corresponding to energies close to zero including (at 
T~< To) the eigenfunction Zo(r) of the bound state 
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determined by equation (15a) at E =  E o. Hence, it is / ( z4-z '  + 2rf)2"~ 
possible to find the value of the constant C in equation - e x p , -  ) R  U Hjj 
(17) 

- \  . 2  / ___Sb (18)  = - . : 4-rf g'~f('t'Z)k I - - e x p , - -  / ~  )J 
where the last ratio applies equation (7) valid at Irl << I. 
The analytical continuation of equation (18) to the range 
T/> T~ makes it possible to take into account the surface 
effect on the eigenfunctions of the continuous spectrum 
in the precritical range also (virtual level in the well). 
For the phase shift 6K we obtain from equations (16) and 
(17) 

cot 6 K = c/k (19) 

It should be noted that the numerical coefficients in 
equations (7) and (18) refer to the case of the rectangular 
well. However, the character of the dependences on ~ at 
Irl << 1 is universal and independent of the form of the 
attractive part of the potential. As to the constant c, it 
is important  that it changes its sign passing through zero 
at the critical point, near where it depends linearly on 
the transition parameter  (c ~ T) and tends to infinity at 
T - *  oc or at U = 0 when the potential well is absent. 

Using the eigenfunctions (15) of discrete and con- 
tinuous spectra after integration in equation (14) for 
the continuous spectrum, we find the partition function 
of the chain near the spherical particle 

z ' + ( ,  4~tR 2 exp - 4R 5 j 

/ (z+s)q7 4-exp,-- 4R 2 ) j - -cexp(c2g 24-c(Z4-Z')) 

4_7.4-Z' 

where R 2 = Na2/6 is the mean-square radius of gyration 
of a random coil, z = r - r ,  and z ' = r ' - r ~  are the 
distances from chain ends to the surface of the particle 
and 

~x 3c 
erfc(x) = 1 - e f t ( x )  e x p ( - t Z ) d t  (21) 

J~ 

is the error function. 
It can be seen from equation (20) that the partation 

function of the chain near the spherical surface of radius 
r~ is related by a simple equation to the partition function 
of the chain near the impermeable plane Z ~ ( z ' , z )  to 
which it passes at r~ ~ oo and which has been obtained 
previously in references 7 and 8: 

z + r s  
ZL~(Z', z) = " ZL%(z', z) (22) 

z' + r  s 

Note that the partition function Ze:(r' ,  r) of the free chain 
may also be formally represented in the form ZL:(Z', Z) 
where z' and z are the distances between the chain ends 
and a phantom spherical surface of radius rf = r - z  = 
r ' - z '  > 0 .  Substitution of equation (13) into equation 
(14) gives 

ZL:(Z', z) L 

(23) 

where ZL~(Z',Z) is obtained from equation (23) at 
rf--* oo. 

The dependence of ZL:(r', r) on r,- follows directly from 
the definition of the centrally symmetrical partition 
function of the free chain and in this sense is trivial in 
contrast to equation (22) describing the dependence of 
the conformation of a chain interacting with the spherical 
surface on the radius r s of this surface. These dependences 
differ markedly. Thus, at z', z << rr, the partition function 
of the free chain strongly depends on rr, in particular at 
rf << R, decreasing with rf. This dependence is due to the 
enthropy disadvantage of a chain return to the small 
region (of the size rr << R). In contrast, partition function 
(22) at z, z'<<r, is virtually independent of r,: with 
decreasing r~ steric restrictions imposed by the particle 
also decrease thus compensating for the entropy dis- 
advantage of the return. 

Subsequently we will compare the expressions corres- 
ponding to the real and phantom spheres for different 
conformational chain characteristics. 

Apart from partition function (20) it is possible to 
consider the partition function of a chain with one fixed 
end obtained by the integration of Z1,(z', z) over z 

Zl.c(. ) - J{, ZL,.(. ,~)d-~ = I + [ZL,.(~ ) -  1] c(,~ + z') 

(24) 

where ZL~(~ ) is the known 8 partition function of a chain 
one end of which is fixed at a distance z' from the planar 
surface 

.... ( ; )  ZL~(. ) = e f t  +exp(c2R2 + c z ' ) e r f c  o R +  

(25) 
t :. t And Zu.(z ) passes into ZLd- ) at J~,-* ~ .  It is evident 

that for a free chain near the phantom sphere we have 
ZLj.(Z' ) = 1 independent of z'. 

Using partition functions (2) and (24) it is possible to 
find various conformational characteristics of the chain 
with one fixed end: firstly, the number of chain contacts 
with the surface 

1 ? 
N~ ~ In Zr,;(z') (26) 

a &' 

And secondly, the mean-square distance of the free chain 
end from the spherical surface 

f,( "2 - ~ - '  z l z 2  <~, = ZLc (~ ) Zx.~(z', dz (27) 

Thirdly, the number of chain units in a spherical layer 
of radius r = r, + z and unit thickness 

, 
ML,(z) = ZT, X(z ') ZI,.(z', z)Z,c ll,(z)dl (28) 

a ,: o 

and 

mtc(z ) = ML,(z)[4n(r , + z) 2] ~ (29) 
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the mean density in a layer of radius r = r~ + z. 
Fourthly, the mean-square thickness of a layer formed by 
the chain above the surface (mean-square distance of 
chain units from the surface) 

f; H2~ = N -  1 I~L~(Z)Z 2 dz (30) 

The expressions obtained above will be used below for 
the analysis of the conformation of a chain grafted onto 
a sphere (z '=  0). 

Diagram o f  state o f  a chain grafted onto a sphere 
The conformation of the Gaussian chain grafted onto 

a sphere is determined by the sign and the relationship 
between three parameters having the dimensionality of 
length: Ic[ -1, r~ and the size of the free chain R, or (at 
1~1 << 1) of two scaling variables cR and r J R .  

For infinitely long chains, the point c = 0 is the point 
of adsorption phase transition. For  finite chains, the 
transition occurs in the range A c ' ~ A z , . ~ N  -1/2 n e a r  
c = 0. Beyond the transition range (far from the critical 
point) at c < 0 and IclR >> 1, the conditions of GSD are 
fulfilled, and the chain is adsorbed (the bonded state 
provides the main contribution to the partition function). 
At c > 0 and cR >> 1 the effect of the attracting part of 
the potential on the chain conformation as a whole is 
not important. In further discussion, these limiting states 
will be called the adsorption (A) and the precritical (B) 
regimes, respectively. The partition function and all the 
conformational characteristics introduced by us for finite 
chains have two asymptotics each, corresponding to these 
regimes. The achievement of the corresponding asymp- 
totics takes place for relatively long (R >> Icl -~) chains. 
The intermediate asymptotics correspond to the tri- 
critical point c = 0. At IclR ~-IclN1/2a,~ 1 a crossover 
occurs between them and the dependences corresponding 
to regimes A and B. The transition range (crossover 
range) will be called regime C (at N ~ ~ it reduces to 
point c = 0). 

The particle size r s determines the measure of steric 
restrictions imposed by the adsorbent surface on the 
chain conformation. If r s greatly exceeds the characteristic 
chain size, then on the chain scale a spherical adsorbent 
is equivalent to an infinite plane adsorbent. Hence, the 
dependence of conformational characteristics on r~ should 
be strong at low r s (regime s of a small sphere) and be 
absent in the asymptotics of large r~ (regime p of a large 
sphere equivalent to a plane). The characteristic size r~o 
separating the regimes s and p is peculiar to each 
adsorption regime. 

For  the determination of r~o, the partition function of 
a chain grafted at one end onto a sphere of radius rs will 
be considered (equation (24) at z ' =  0) 

ZL¢(O ) = - -  + 1 - Z~(O) 
cr~ 

~ I  1 ( 1 -  Z~(0)) r~ << r~o 
(31) 

[Zff,.(O) r~ >> r,o 

where 

Z~(0) = exp(cZR 2) erfc(cR) (32) 

is the partition function of a chain grafted onto a plane 

and 

rso ~ (1 - zL (o ) ) ( cZ~(O) ) -  ' 

J'R regimes B and C 
(33) 

I c l -  1 regime A 

As will be shown below, rso coincides with an accuracy 
of the coefficient with the thickness of the adsorption 
layer (n~c) 1/2. 

Hence, taking into account three adsorption (A, C, B) 
and two 'geometrical' (s and p) regimes we have six 
regimes (different asymptotics) for the conformational 
characteristics of the chain. Figure 3 shows the c -  r [  1 
diagram of state for a chain grafted onto a sphere, and 
Table I gives the asymptotics of the partition function 
ZLc(0), in different regimes. At the boundaries of regions 
in the diagram in Figure 3, a crossover takes place 
between the dependences in the neighbouring regions. 

It can be seen from Table 1 and equation (31) that at 
all values of rs the partition function ZL~(0) increases with 
decreasing temperature z ~ c. The minimum value of 
ZLc(O) corresponds to T ~ ~ (regime B, the limit of an 
inert surface). It may be obtained from equation (24) in 

C, 

I 

Bp 

Cp 

Ap 

s ;  / 
/ 

/ 
/ 

/ 
/ B' s' 

/ 
/ 

I__ C~ I ~- 
R 

~ $ 

Figure 3 Diagram of state of a chain grafted onto a spherical surface 
of radius r, in a system of coordinates (c-  r~-l). Capital letters A, B 
and C designate adsorption regimes and lower case letters s and p 
designate the regimes of a small and a large sphere, respectively 

Table 1 Asymptotics of the partition function ZLc(0) in different 
regimes (r,o from equation (33)) 

Adsorption regimes 
Geometric B C A 
regimes c > 0, cR >> 1 c ~- O, [clR << 1 c < 0, IclR >> 1 

P (crs)- 1 2R/(rsn 1/2) 2 exp(c2R2)/(JclQ 
r~ >> r~o 

s 
(cRrd/2)- 1 1 2 exp(c2R 2) 

r s << rso 
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the limit c ~ oo (at z' = a) 

fa/r~ r~ << R 
(34) 

(a / (Rn  1/2) r, >> R 

For the free energy of a chain segment at N ~ Go we 
have from Table 1 

{0_ c~>0 
N-1FL¢= - T N - 1  lnZLc(O) N~QC) ~a 2c2T c < 0  

(35) 
It is clear that in complete agreement with conclusions 

drawn here, the point c = 0 is the point of the phase 
transition between states B and A. At N ~  oo the 
boundaries of regimes A C and B-C in Figure 3 become 
one and are transformed into the line of adsorption 
second order phase transition. 

Strong adsorption 
So far we limited ourselves to the conditions of weak 

(r < 0, Irl << 1) adsorption under which the fraction of 
bonded units is small ~b ~ PTI << 1, and most units are 
in loops. In the opposite limiting case of strong 
adsorption (]rl ~ 1), the chain is completely localized in 
the attraction range z < b near the surface. In a deep 
potential well, the first discrete level is near its bottom 
and under the conditions of GSD ((a/b)ZN >> 1) free 
energy per unit of the adsorbed chain is given by 

- F l U  ~- - U + (nz/6)(a/b)ZT (36) 

Figure 4 shows the temperature dependence of free 
energy per unit of an infinitely long chain. The range of 
quadratic dependence - F / N  ~ ( T -  T¢) z near T~ corres- 
ponds to the range of weak adsorption, and in that of 
strong adsorption the free energy varies depending 
linearly on T and tends to - U at T ~ 0 (equation 36). 

Adsorption in a spherical layer ('ditch') 
In preceding sections adsorption on the surface of an 

impermeable adsorbent has been considered (Figure 2a). 
Let us now consider the adsorption in a marked out 
spherical layer in the absence of an impermeable core 
(adsorption on the surface of a phantom sphere), i.e. in 

a field of the form (Figure 2b) 

U(r)=fO,  r<r~ or r > r ~ + b  (37) 
- U ,  r~<r<r~+b 

This problem is solved by the method analogous to 
the above procedure. For the critical adsorption tempera- 
ture T~ which, as before, corresponds to the second-order 
phase transition point, from the condition of the 
appearance of the first discrete level in the hole of the 
form of equation (37) one obtains 

where 

to give 

~cr, tg h-c b = I (38) 

.2 ~c c = (6/a)2(U/T)~ (39) 

(24 b 2 
~n ~ U ( / a )  , r~ << b 

I r~b 
[6U a~, ,>>b 

(40) 

It is clear that at small r~ << b the value of Tc from 
equation (40) coincides with that obtained previously for 
adsorption on the surface of an impermeable particle, i.e. 
the impermeability of the core of a small particle does 
not affect the position of the transition. In contrast, at 
r s >> b, the value of Tc increases (or (U/Tc) decreases) 
proportionally to rs so that Tc---' oc (or (U/Tc)= 0) at 
r~ --* oo, i.e. on passing to the case of a plane permeable 
adsorbent. In this case the beginning of adsorption does 
not require any large scale change in the conformation 
of the free chain reliably returning to the phantom plane. 
In contrast to adsorption in the potential well near 
the wall (Figure la), in this case the perturbing action 
of the impermeable surface is absent. 

Analysis shows that in the case of a potential (equation 
37), all adsorption regimes described above still exist. In 
these regimes, large scale conformational and thermo- 
dynamic characteristics of the chain coincide with those 
obtained above. The difference is only in the renormaliza- 
tion of the interaction parameter c, in the dependence 
Tc = T~(r,) and in the fact that at r~ >> R the precritical 
r e g i m e  Bp exists only under the conditions of the repulsing 
spherical layer U < 0 in equation (37) (Figure 2c). At 
U > 0 the regime Bp may exist only at T < 0. 

F 
At 

- U  

Figure 4 Temperature dependence of free energy per unit of an 
infinitely long chain interacting with a spherical particle 

C O N C L U S I O N  

In the first part of the paper the analytical expressions 
for the partition function of the chain near an adsorbing 
spherical surface are obtained and the diagram of states 
of the system is constructed. In Part 2 of this paper we 
shall perform the full analysis of the conformation of the 
chain in all regions of the diagram of states. 
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